Search results for "Water-gas shift reaction"

showing 6 items of 6 documents

Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 ‐MOF during the Low‐temperature Water‐Gas Shift Reaction

2021

[EN] The low-temperature water-gas shift reaction (WGSR, CO+H2O H-2+CO2) is considered a very promising reaction -candidate for fuel cells- despite an efficient and robust catalyst is still desirable. One of the more prominent catalysts for this reaction is based on single Pt atoms (Pt-1) on different supports, which are supposed to manifold the reaction by the accepted mechanism for the general WGSR, i. e. by addition of one H2O molecule to CO, with generation of CO2 and H-2. Here we show, experimentally, that not one but two H2O molecules are added to CO on the Pt-1 catalyst, as assessed by a combination of reactivity experiments with soluble Pt catalysts, kinetic and spectroscopic measur…

Materials scienceAigua QuímicaMetal-organic frameworkSingle atom catalystchemistry.chemical_element010402 general chemistry01 natural sciences7. Clean energyCatalysisWater-gas shift reactionInorganic ChemistryCatàlisiMoleculePhysical and Theoretical ChemistryPlatinumWater gas shift reactionCrystallography010405 organic chemistryOrganic Chemistry0104 chemical sciencesVisualizationCrystallographychemistryMetal-organic frameworkCristallsPlatinumChemCatChem
researchProduct

Cover Feature: Crystallographic Visualization of a Double Water Molecule Addition on a Pt 1 ‐MOF during the Low‐temperature Water‐Gas Shift Reaction …

2021

Materials scienceOrganic Chemistrychemistry.chemical_elementCatalysisWater-gas shift reactionVisualizationInorganic ChemistryCrystallographychemistryFeature (computer vision)MoleculeCover (algebra)Metal-organic frameworkPhysical and Theoretical ChemistryPlatinumChemCatChem
researchProduct

Confined Pt-1(1+) Water Clusters in a MOF Catalyze the Low-Temperature Water-Gas Shift Reaction with both CO2 Oxygen Atoms Coming from Water

2018

[EN] The synthesis and reactivity of single metal atoms in a low-valence state bound to just water, rather than to organic ligands or surfaces, is a major experimental challenge. Herein, we show a gram-scale wet synthesis of Pt-1(1+) stabilized in a confined space by a crystallographically well-defined first water sphere, and with a second coordination sphere linked to a metal-organic framework (MOF) through electrostatic and H-bonding interactions. The role of the water cluster is not only isolating and stabilizing the Pt atoms, but also regulating the charge of the metal and the adsorption of reactants. This is shown for the low-temperature water-gas shift reaction (WGSR: CO + H2O CO2 + H…

PhysicsWater–gas shift reactionQuímica Inorgánicabiology010405 organic chemistryWater-gas shift reactionSingle atom catalystGeneral MedicineGeneral ChemistryMetal-organic frameworks010402 general chemistrybiology.organism_classification01 natural sciencesCatalysisWater-gas shift reactionSingle-atom catalyst0104 chemical sciencesOxygen atomWater clustersPhysical chemistryValenciaMetal-organic frameworks (MOFs)Platinum
researchProduct

Unraveling the Role of the Rh–ZrO2 Interface in the Water–Gas-Shift Reaction via a First-Principles Microkinetic Study

2018

The industrially important water–gas-shift (WGS) reaction is a complex network of competing elementary reactions in which the catalyst is a multicomponent system consisting of distinct domains. Herein, we have combined density functional theory calculations with microkinetic modeling to explore the active phase, kinetics, and reaction mechanism of the WGS over the Rh–ZrO2 interface. We have explicitly considered the support and metal and their interface and find that the Rh–ZrO2 interface is far more active toward WGS than Rh(111) facets, which are susceptible to CO poisoning. CO2 forming on the zirconia support rapidly transforms into formate. These findings demonstrate the central role of…

Reaction mechanismkaasutMaterials sciencewater-gas shift010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysisWater-gas shift reactionCatalysischemistry.chemical_compoundElementary reactionFormaterajapintailmiötBifunctionalta116density functional theorykemialliset reaktiot010405 organic chemistrytiheysfunktionaaliteoriamicrokineticsGeneral Chemistry0104 chemical sciencesheterogeneous catalysischemistryChemical physicskatalyysirajapinnat (pinnat)Density functional theoryACS Catalysis
researchProduct

Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts

2015

7 figures.-- © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Vanadium and gold catalystsHydrogenGeneral Chemical EngineeringInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_elementVanadiumHydrogen catalytic productionPhotochemistryWater-gas shift reactionVanadium oxideCatalysischemistry.chemical_compoundFuel TechnologyVanadium oxidechemistryPropaneDehydrogenationGoldPropane oxidationWGSHydrogen production
researchProduct

Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metalorganic frameworks for the catalytic hydrogenation of CO 2

2021

[EN] Their complex surface chemistry and high oxygen lattice mobilities place mixed-metal oxides among the most important families of materials. Modulation of stoichiometry in mixed-metal oxides has been shown to be a very powerful tool for tuning optical and catalytic properties. However, accessing different stoichiometries is not always synthetically possible. Here, we show that the thermal decomposition of the recently reported metal-organic framework MUV-101(Fe, Ti) results in the formation of carbon-supported titanomaghemite nanoparticles with an unprecedented Fe/Ti ratio close to 2, not achievable by soft-chemistry routes. The resulting titanomaghemite phase displays outstanding catal…

titanomaghemiteMaterials scienceRWGSNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesReverse water-gas shiftWater-gas shift reactionMixed oxidesCatalysisTitanomaghemitePhase (matter)[CHIM.CRIS]Chemical Sciences/CristallographyPhysical and Theoretical Chemistrymixed oxidesOrganic ChemistryThermal decomposition[CHIM.MATE]Chemical Sciences/Material chemistry[CHIM.CATA]Chemical Sciences/Catalysis021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringChemistry (miscellaneous)reverse water-gas shiftMetal-organic framework0210 nano-technologySelectivityMOF-mediated synthesisStoichiometry
researchProduct